CANTOR-BENDIXSON DEGREES AND CONVEXITY IN \mathbb{R}^2

ΒY

MENACHEM KOJMAN

Department of Mathematics and Computer Science Ben Gurion University of the Negev, Beer Sheva 84105, Israel e-mail: kojman@cs.bgu.ac.il

ABSTRACT

We present an ordinal rank, δ^3 , which refines the standard classification of non-convexity among closed planar sets. The class of closed planar sets falls into a hierarchy of order type $\omega_1 + 1$ when ordered by δ -rank.

The rank $\delta^3(S)$ of a set S is defined by means of topological complexity of 3-cliques in the set. A 3-clique in a set S is a subset of S all of whose unordered 3-tuples fail to have their convex hull in S. Similarly, $\delta^n(S)$ is defined for all n > 1.

The classification cannot be done using δ^2 , which considers only 2-cliques (known in the literature also as "visually independent subsets"), and in dimension 3 or higher the analogous classification is not valid.

1. Introduction

Let S be a set in a linear space and suppose that S is not convex. One would like to measure how far S is from being convex. The most natural number for measuring non-convexity of a set S is the least number of convex subsets of S needed to cover S. Let us, then, define $\gamma(S)$ as the least cardinality of a collection of convex sets whose union equals S. The function γ is adopted as the basic measurement of non-convexity. Classification by γ gives countably many different classes of sets with finite γ and (potentially) only two classes with infinite γ : sets with countable γ and sets with uncountable γ .

In this paper we define for each n > 1 a degree functions δ^n , and show that δ^3 refines the γ -classification for closed, planar sets. The class

Received April 8, 1998

M. KOJMAN

 $\{S: S \subseteq \mathbb{R}^2 \text{ is closed and } \gamma(S) \leq \aleph_0\}$ is divided by δ^3 into \aleph_1 sub-classes, while $\{S: S \subseteq \mathbb{R}^2 \text{ is closed and } \gamma(S) > \aleph_0\}$ is a single δ^3 -class.

The first step in understanding the structure of a set S with $\gamma(S) = \lambda$ is to understand why S fails to decompose into a union of fewer than λ convex sets.

There is an easy sufficient condition for S not to be a union of fewer than λ convex sets: the existence of a subset $P \subseteq S$ of cardinality λ , with the property that for any two points in P the line segment connecting them is not contained in S. No two of those points can sit in the same convex subset of S, hence S is not a union of n convex sets. Call a subset of S with this property "visually independent". Let $\alpha(S)$ be the supremum of cardinalities of all visually independent subsets in S.

Does α measure non-convexity adequately? This can be rephrased as whether there exists a "reasonable" function f so that $\gamma(S) \leq f(\alpha(S))$.

For general sets this is badly false (see [6], Section 5), and also in "nice" sets in dimension 3 or higher the connection between α and γ is not well behaved. Nevertheless, closed sets in \mathbb{R}^2 show some tight connections between α and γ . A long sequence of results [4, 9, 1, 2] culminated in the discovery [3] that $\gamma(S) \leq f(\alpha(S))$ for some function f, for closed planar sets. Later it was shown that fis at most n^6 in [8]. Recently, n^6 was lowered to $18n^3$ by Matousek and Valtr in [7], where also a lower bound of $O(n^2)$ was set.

In sets which are not a finite union of convex sets, the connection between α and γ is not as tight. There exist compact, planar sets with countable α and uncountable γ ([6], Example 2.1). Put differently, the class of closed planar sets with countable α contains also sets with uncountable γ . This means that the notion of visual independence does not capture all the information as to why a closed $S \subseteq R^2$ cannot be covered by countably many convex subsets.

However, a generalization of visual independence does. Call a subset $P \subseteq S$ a 3-clique if every 3-element subset $X \subseteq P$ satisfies that its convex closure is not contained in S. Theorem 2.2 in [6] says that a closed set in the plane is not a countable union of convex sets if, and only if, it contains an uncountable (actually perfect) 3-clique. Namely, the *only* reason for such S not to be a countable union of convex sets is that it contains an uncountable 3-clique.

Since, by this theorem, the full information about non-convexity of a closed planar set is stored in the collection of its 3-cliques, it is natural to try and classify non-convexity of such sets by classifying their 3-cliques. It turns out that the standard topological classification of closed countable sets — the Cantor-Bendixson degree — indeed works: for every closed planar set which is a countable union of convex sets there exists a countable ordinal which bounds the Cantor-Bendixson degrees of all 3-cliques in S. This ordinal is, then, the degree of non-convexity of S.

1.1 STATEMENT OF THE RESULTS. Let S be a subset of a linear space. Call $P \subseteq S$ an *n*-clique in S if $n \ge 2$ and for every *n*-element subset X of P the convex closure of X is not contained in S. Let $\delta^n(S)$ be the supremum of Cantor-Bendixson degrees of all *n*-cliques in S. Since every *n*-clique is also an n+1-clique, $\delta^n(S) \le \delta^{n+1}(S)$ for all $n \ge 2$. The rank $\delta(S)$ is the supremum over Cantor-Bendixson degrees of *n*-cliques for all *n*, that is, $\delta(S) = \sup\{\delta^n(S) : n < \omega\}$.

It is proved that for every closed set in a polish linear space, an uncountable δ implies an uncountable γ . Surely, if $\delta(S)$ is uncountable then $\delta^n(S)$ is uncountable for some n. In the case of closed planar sets this n has to be ≤ 3 , by [6], theorem 2.2. Thus (Corollary 6 below), for a closed planar S, the rank $\delta^3(S)$ is countable if and only if S is a countable union of convex sets. In other words, δ^3 refines γ on closed planar sets by breaking the class of closed $S \subseteq \mathbb{R}^2$ to $\aleph_1 + 1$ classes, so that the top class is that of sets with uncountable γ and all smaller classes stratify the class of sets with countable γ . Since for countable sets the rank δ^n clearly coincides with the usual Cantor-Bendixson degree, any closed set of Cantor-Bendixson degree α is an example of a set with $\delta^3(S) = \alpha$; is is easy to construct uncountable sets of degree α as well.

Perles' Example 2.1 in [6], in which γ is uncountable yet δ^2 equals 1, shows that one cannot get similar classification with δ^2 instead of δ^3 . In dimension d > 2 a compact set may have δ -rank 1 but still have an uncountable γ (see [6], Example 4.2). Thus, Corollary 6 is sharp in two senses: first, δ^3 cannot be weakened to δ^2 and \mathbb{R}^2 cannot be replaced by \mathbb{R}^3 .

The last remark suggests that classification of closed, non-convex sets in \mathbb{R}^3 requires other methods. A more complicated rank function is needed to classify non-convexity of closed sets in *all* Polish vector spaces. Such rank function exists and will be presented in [5].

1.2 HISTORY. Infinite unions of convex sets were studied in [6]. We refer the reader to that paper for basic facts and examples concerning such sets.

The following problem is still open:

PROBLEM 1: Is it true that a closed planar set in which the closure of every visually independent subset is countable, is a countable union of convex sets?

This problem was asked by G. Kalai and only a very minor step towards solving it has been ([6], Theorem 4.2).

M. KOJMAN

1.3 Notation: Our notation is standard, except maybe for denoting the set of natural numbers by ω . A topological space X is **polish** if it is complete, metric and separable. A **sequence** is a function whose domain is an initial segment of ω . By n^{ω} we denote the space of all infinite sequences over n symbols and by n^k the set of sequences of length k over n symbols. The space n^{ω} is topologized by declaring the set of all infinite sequences that extend a given finite sequence as a basic open set. This topology is polish, by the metric which assigns to two sequences $\eta, \nu \in n^{\omega}$ the distance 1/k where k is the first coordinate in which η and ν are different. We write $\eta \triangleleft \nu$ to denote that the sequence η is an initial segment of the sequence ν , and by $\eta \hat{\nu}$ the concatenation of η with ν is denoted.

2. Cantor-Bendixson degrees and convexity

We begin by recalling the definition of the Cantor-Bendixson degree of a set S in some topological space X. A point $x \in S$ is isolated in S, if there is an open neighborhood $u \ni x$ so that $S \cap u = \{x\}$. By induction on ordinals define the α -th derived subset of S:

- 1. $S^{(0)} = S$,
- 2. $S^{(\alpha+1)} = S^{(\alpha)} \{x : x \text{ is isolated in } S^{(\alpha)}\},\$
- 3. If α is limit, then $S^{(\alpha)} = \bigcap_{\beta < \alpha} S^{(\beta)}$.

Let $\operatorname{rk}(S)$, the **Cantor-Bendixson degree** of S, be the least ordinal α for which $S^{(\alpha)} = S^{(\alpha+1)}$. Thus, for example, the Cantor-Bendixson degree of a set which is dense in itself is 0.

FACT 2: If S is a subset of a polish space and $rk(S) = \alpha + 1$, then there is a closed subset $C \subseteq S$ with rk(C) = rk(S).

Given a set S and a point $x \in S$, the **degree of** x in S, which we denote by $\operatorname{rk}_S(x)$, is the last ordinal α for which $x \in S^{(\alpha)}$, if x does not belong to $S^{(\alpha)}$ for all α ; if $x \in S^{(\alpha)}$ for all α , we say that $\operatorname{rk}_S(x) = \infty$. Clearly, for every set S and $\beta < \operatorname{rk}(S)$ there are points $x \in S$ with $\operatorname{rk}_S(x) = \beta$ (but $S^{\operatorname{rk}(S)}$ may be null).

We remark that a separable metric space is second countable, and therefore the Cantor-Bendixson degree of every set in such a space is always *countable*.

3. Proofs

Definition 3: Let S be a set in a topological vector space. Let $\delta^n(S)$ be the supremum over all Cantor-Bendixson degrees of n-cliques in S. Let $\delta(S) := \sup\{\delta^n(S) : n < \omega\}$.

THEOREM 4: Suppose that S is a closed set in a polish linear space E and $\gamma(S) \leq \aleph_0$. Then $\delta(S) < \omega_1$.

Proof: Suppose that $S \subseteq E$, E is a polish linear space and $\delta(S) = \omega_1$. Let $n \ge 2$ be the least so that $\delta^n(S) = \omega_1$. We may assume, then, that there are closed *n*-cliques of unbounded (countable) Cantor-Bendixson degrees in S.

LEMMA 5: Suppose that u is an open neighborhood in E and that u contains *n*-cliques in S of unbounded Cantor-Bendixson degrees. Then there exist open neighborhoods u_0, \ldots, u_{n-1} such that for every i < n, $\operatorname{cl} u_i \subseteq u$, u_i contains cliques of unbounded Cantor-Bendixson degrees and so that for every choice of $y_i \in \operatorname{cl} u_i$, $\operatorname{conv}(y_0, \ldots, y_{n-1}) \not\subseteq S$.

Proof of Lemma 5: Fix a countable base \mathcal{B} for the topology of E (e.g. all balls of rational radius and a center in some countable dense set).

Define now a mapping from ω_1 to *n*-tuples from $\mathcal{B}, \beta \mapsto (u_i^{\beta}, \ldots, u_{n-1}^{\beta})$, as follows. Let $\beta < \omega_1$ be given. Choose first an *n*-clique $P \subseteq u$ and *n* points in P, $x_0^{\beta}, \ldots, x_{n-1}^{\beta}$, such that $\operatorname{rk}_P(x_i^{\beta}) \geq \beta$. Since the complement of S is open, there are open neighborhood u_i of x_i^{β} for i < n so that for every choice of $y_i \in u_i$ it holds that $\operatorname{conv}(y_0, \ldots, y_{n-1}) \not\subseteq S$. By shrinking each u_i , we may assume that $u_i \in \mathcal{B}, \operatorname{cl} u_i \subseteq u$ and that $\operatorname{conv}(y_0, \ldots, y_{n-1}) \not\subseteq S$ for every choice of $y_i \in \operatorname{cl} u_i^{\beta}$. Let $(u_i^{\beta}, \ldots, u_{n-1}^{\beta}) := (u_0, \ldots, u_{n-1})$.

Since there are only countably many *n*-tuples from \mathcal{B} , there is a fixed *n*-tuple (u_0, \ldots, u_{n-1}) and an unbounded $I \subseteq \omega_1$ so that $(u_0, \ldots, u_{n-1}) = (u_0^{\beta}, \ldots, u_{n-1}^{\beta})$ for every $\beta \in I$.

Therefore, for every i < n and an ordinal $\beta < \omega_1$, there exists a closed clique P and a point $x \in P \cap u_i$ with $\operatorname{rk}_P(x) \ge \beta$. Since u_i is open, $\operatorname{rk}(P \cap u_i) \ge \beta$. Therefore each u_i contains cliques of unbounded degrees.

Suppose that S is closed, $\gamma(S) \leq \aleph_0$ and S contains *n*-cliques of unbounded degrees. By induction on k define neighborhoods u_η for $\eta \in n^k$ so that:

- 1. $d(u_{\eta}) < 1/k$ for all $\eta, \nu \in n^k$,
- 2. $\eta \triangleleft \nu \Rightarrow \operatorname{cl} u_{\nu} \subseteq u_{\eta}$,
- 3. u_{η} contains closed cliques in S of unbounded Cantor-Bendixson degrees,
- 4. if $\eta_0, \ldots, \eta_{n-1}$ are distinct and agree up to k-1, then for every choice of y_i from cl $f(\eta_i)$ the convex closure of $\{y_0, \ldots, y_{n-1}\}$ is not contained in S.

At stage k + 1 use Lemma 5 to find, for each $\eta \in n^k$, sub-neighborhoods $\{u_n : i < \kappa\}$, of u_η , which satisfy conditions 1-4 above.

Suppose now that u_{η} is defined for every finite sequence over n and define $g: n^{\omega} \to S$ by $g(\eta) := \bigcap_{k} u_{\eta \mid k}$. Since E is complete, g is well defined. Since S is closed, $g(\eta) \in S$ for every $\eta \in n^{\omega}$.

Suppose now that $S = \bigcup_n C_n$. The space n^{ω} of all infinite sequences over n symbols is a complete separable metric space under the metrics $d(\eta, \nu) = 1/k$ for the least k such that $\eta(k) \neq \nu(k)$. By the Baire category theorem, there is some index m so that $f^{-1}(C_m)$ is somewhere dense. Choose some k and a sequence $\nu \in n^k$ so that $f^{-1}(C_m)$ is dense in $\{\eta \in n^{\omega} : \nu \triangleleft \eta\}$. For every i < n there must then be a sequence η_i so that $\eta_i \upharpoonright k + 1 = \eta \ i$, and $f(\eta_i) \in C_m$. But then $f(\eta_i) \in u_{\eta \ i}$ by the definition of g, and therefore $\operatorname{conv}(g(\eta_0), \ldots, g(\eta_{n-1})) \not\subseteq S$ by condition 4. Therefore C_m is not convex.

COROLLARY 6: A closed planar set is a countable union of convex sets if and only if $\delta^3(S) < \omega_1$.

Proof: One direction is proved above.

For the other direction, suppose that $S \subseteq \mathbb{R}^3$ is closed and is not a countable union of convex sets. By [6], Theorem 2.2 there is a perfect 3-clique $P \subseteq S$. Every subset of P is a 3-clique, and since P is perfect it contains countable sets of unbounded Cantor-Bendixson degrees.

We observe that Example 2.1 in [6] of a compact planar set S satisfies that $\delta^2(S) = 1$ while $\delta^3(S) = \omega_1$. Hence, classification by δ^2 does not refine the classification by γ .

It is natural to ask at this point whether $\delta^4(S)$ classifies non-convexity of closed sets in \mathbb{R}^3 analogously to the manner δ^3 classifies closed sets in \mathbb{R}^2 . This is false by Example 4.1 in [6] (see also [5]). This example is of a compact $S \subseteq \mathbb{R}^3$ with $\delta(S) = 1$ and $\gamma(S) > \aleph_0$.

References

- M. Breen, An R^d analogue of Valentine's theorem on 3-convex sets, Israel Journal of Mathematics 24 (1976), 206-210.
- [2] M. Breen, A decomposition theorem for m-convex sets, Israel Journal of Mathematics 24 (1976), 211–216.
- [3] M. Breen and D. C. Kay, General decomposition theorems for m-convex sets in the plane, Israel Journal of Mathematics 24 (1976), 217-233.
- [4] H. G. Eggleston, A condition for a compact plane set to be a union of finitely many convex sets, Proceedings of the Cambridge Philosophical Society 76 (1974), 61-66.

- [5] M. Kojman, Classifying non-convexity in higher dimensions, Fundamenta Mathematicae, in press.
- [6] M. Kojman, M. A. Perles, and S. Shelah, Sets in a Euclidean space which are not a countable union of convex subsets, Israel Journal of Mathematics 70 (1990), 313– 342.
- [7] J. Matoušek and P. Valtr, On visibility and covering by convex sets, Israel Journal of Mathematics 113 (1999), 341-379.
- [8] M. A. Perles and S. Shelah, A closed (n + 1)-convex set in \mathbb{R}^2 is the union of n^6 convex sets, Israel Journal of Mathematics **70** (1990), 305-312.
- [9] F. A. Valentine, A three point convexity property, Pacific Journal of Mathematics 7 (1957), 1227-1235.