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ABSTRACT 

We present an ordinal rank, 63, which refines the standard classification 

of non-convexity among closed planar sets. The class of closed planar 

sets falls into a hierarchy of order type wl + 1 when ordered by 6-rank. 

The rank 63(S) of a set S is defined by means of topological complexity 

of 3-cliques in the set. A 3-clique in a set S is a subset of S all of whose 

unordered 3-tuples fail to have their convex hull in S. Similarly, 6"(S) is 
defined for all n > 1. 

The classification cannot be done using 62, which considers only 2-cliques 

(known in the literature also as "visually independent subsets"), ancl in 

dimension 3 or higher the analogous classification is not valid. 

1. I n t r o d u c t i o n  

Let S be a set in a linear space and suppose that  S is not convex. One would 

like to measure how far S is from being convex. The most natural  number 

for measuring non-convexity of a set S is the least number of convex subsets 

of S needed to cover S. Let us, then, define 7(S) as the least cardinality of 

a collection of convex sets whose union equals S. The function 7 is adopted 

as the basic measurement of non-convexity. Classification by ~, gives countably 

many different classes of sets with finite "y and (potentially) only two classes with 

infinite 7: sets with countable 7 and sets with uncountable 7. 

In this paper  we define for each n > 1 a degree functions 6 ",  and 

show that  6 s refines the 7-classification for closed, planar sets. The class 
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{S: S _C R 2 is closed and 7(S) < 1%} is divided by 63 into ~1 sub-classes, 

while {S: S C_ R z is closed and 7(S) > No} is a single 53-class. 

The first step in understanding the structure of a set S with 7(S) = A is to 

understand why S fails to decompose into a union of fewer than A convex sets. 

There is an easy su~cient condition for S not to be a union of fewer than A 

convex sets: the existence of a subset P _C S of cardinality A, with the property 

that for any two points in P the line segment connecting them is not contained 

in S. No two of those points can sit in the same convex subset of S, hence S is 

not a union of n convex sets. Call a subset of S with this property "visually inde- 

pendent". Let a(S)  be the supremum of cardinalities of all visually independent 

subsets in S. 

Does a measure non-convexity adequately? This can be rephrased as whether 

there exists a "reasonable" function f so that 7(S) < f(a(S)). 
For general sets this is badly false (see [6], Section 5), and also in "nice" sets 

in dimension 3 or higher the connection between a and 7 is not well behaved. 

Nevertheless, closed sets in R 2 show some tight connections between a and % A 

long sequence of results [4, 9, 1, 2] culminated in the discovery [3] that 7(S) _< 

f(c~(S)) for some function f ,  for closed planar sets. Later it was shown that f 

is at most n 6 in [8]. Recently, n 6 was lowered to 18n a by Matousek and Valtr in 

[7], where also a lower bound of O(n 2) was set. 

In sets which are not a finite union of convex sets, the connection between 

and "y is not as tight. There exist compact, planar sets with countable ~ and 

uncountable 9' ([6], Example 2.1). Put  differently, the class of closed planar sets 

wil~h countable c~ contains also sets with uncountable 7. This means that the 

notion of visual independence does not capture all the information as to why a 

closed S C_ R 2 cannot be covered by countably many convex subsets. 

However, a generalization of visual independence does. Call a subset P c_ S a 

3-cl ique if every 3-element subset X C_ P satisfies that its convex closure is not 

contained in S. Theorem 2.2 in [6] says that a closed set in the plane is not a 

countable union of convex sets if, and only if, it contains an uncountable (actually 

perfect) 3-clique. Namely, the only reason for such S not to be a countable union 

of convex sets is that  it contains an uncountable 3-clique. 

Since, by this theorem, the full information about non-convexity of a closed 

planar set is stored in the collection of its 3-cliques, it is natural to try and classify 

non-convexity of such sets by classifying their 3-cliques. It turns out that the stan- 

dard topological classification of closed countable sets - -  the Cantor-Bendixson 

degree - -  indeed works: for every closed planar set which is a countable union of 
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convex sets there exists a countable ordinal which bounds the Cantor-Bendixson 

degrees of all 3-cliques in S. This ordinal is, then, the degree of non-convexity of 

S. 

1.1 STATEMENT OF THE RESULTS. Let S be a subset of a linear space. Call 

P C_ S an n-c l ique  in S if n > 2 and for every n-element subset X of P the 

convex closure of X is not contained in S. Let 5n(S) be the supremum of Cantor-  

Bendixson degrees of all n-cliques in S. Since every n-clique is also an n-t-l-clique, 

6"(S) < 5"+1(S) for all n > 2. The rank 5(S) is the supremum over Cantor-  

Bendixson degrees of n-cliques for all n, that is, 5(S) = sup{5"(S) : n < w}. 

It is proved that for every closed set in a polish linear space, an uncountable 5 

implies an uncountable % Surely, if 5(S) is uncountable then 5" (S) is uncountable 

for some n. In the case of closed planar sets this n has to be <_ 3, by [6], theorem 

2.2. Thus (Corollary 6 below), for a closed planar S, the rank 53(S) is countable 

if and only if S is a countable union of convex sets. In other words, 53 refines 7 

on closed planar sets by breaking the class of closed S c_ R 2 to Ri + 1 classes, 

so that  the top class is that of sets with uncountable 7 and all smaller classes 

stratify the class of sets with countable 7. Since for countable sets the rank 

5" clearly coincides with the usual Cantor-Bendixson degree, any closed set of 

Cantor-Bendixson degree a is an example of a set with 53(S) = a; is is easy to 

construct uncountable sets of degree a as well. 

Perles' Example 2.1 in [6], in which 7 is uncountable yet 52 equals 1, shows that 

one cannot get similar classification with 52 instead of 53. In dimension d > 2 a 

compact set may have 5-rank 1 but still have an uncountable 7 (see [6], Example 

4.2). Thus, Corollary 6 is sharp in two senses: first, (f 3 cannot be weakened to 

5 2 and R 2 cannot be replaced by R a. 

The last remark suggests that  classification of closed, non-convex sets in 

R 3 requires other methods. A more complicated rank function is needed to clas- 

sify non-convexity of closed sets in all Polish vector spaces. Such rank function 

exists and will be presented in [5]. 

1.2 HISTORY. Infinite unions of convex sets were studied in [6]. We refer the 

reader to that paper for basic facts and examples concerning such sets. 

The following problem is still open: 

PROBLEM 1: IS it true that a closed planar set in which the closure of every 

visually independent subset is countable, is a countable union of convex sets? 

This problem was asked by G. Kalai and only a very minor step towards solving 

it has been ([6], Theorem 4.2). 
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1.3 Notation: Our notation is standard, except maybe for denoting the set of 

natural  numbers by o0. A topological space X is po l i sh  if it is complete, metric 

and separable. A s e q u e n c e  is a function whose domain is an initial segment of 

w. By n ~ we denote the space of all infinite sequences over n symbols and by 

n k the set of sequences of length k over n symbols. The space n ~ is topologized 

by declaring the set of all infinite sequences that  extend a given finite sequence 

as a basic open set. This topology is polish, by the metric which assigns to two 

sequences 7/, v E n ~ the distance 1/k where k is the first coordinate in which r I 

and v are different. We write r / <1 v to denote that  the sequence 7/is an initial 

segment of the sequence ~,, and by ~"v the concatenation of ~? with ~, is denoted. 

2. Cantor-Bendixson degrees and convexity 

We begin by recalling the definition of the Cantor-Bendixson degree of a set S 

in some topological space X. A point x E S is isolated in S, if there is an open 

neighborhood u 9 x so that  S M u = {x}. By induction on ordinals define the 

r derived subset of S: 

1. S (~ = S, 

2. S (a+l) -- S (~) - {x : x is isolated in S(a)}, 

3. If a is limit, then S (a) = ~ < ~  S (~). 

Let rk(S),  the Cantor-Bendixson degree of S, be the least ordinal a for 

which S (~) = S (a+l). Thus, for example, the Cantor- Bendixson degree of a set 

which is dense in itself is 0. 

FACT 2: If S is a subset of a polish space and rk(S) = a + 1, then there is a 

closed subset C _C S with rk(C) = rk(S). 

Given a set S and a point x E S, the d e g r e e  of  x in S, which we denote by 

rks(x) ,  is the last ordinal r for which x E S (~), if x does not belong to S (a) for 

all a;  if x E S (a) for all a ,  we say that  rks(x)  = c~. Clearly, for every set S and 

fl < rk(S) there are points x E S with rks(x)  = /3  (but S rk(s) may be null). 

We remark that  a separable metric space is second countable, and therefore 

the Cantor-Bendixson degree of every set in such a space is always countable. 

3. Proofs 

Definition 3: Let S be a set in a topological vector space. Let ~ ( S )  be the 

supremum over all Cantor-Bendixson degrees of n-cliques in S. Let ~(S) := 

sup{ "(s) : n < 
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THEOREM 4: Suppose that S is a closed set in a polish linear space E and 

"/(S) _< Ro. Then ~(S) < wl. 

Proof." Suppose that S c_ E, E is a polish linear space and 6(S) = wl. Let n > 2 

be the least so that  6"(S) = wl. We may assume, then, that  there are closed 

n-cliques of unbounded (countable) Cantor-Bendixson degrees in S. 

LEMMA 5: Suppose that u is an open neighborhood in E and that u contains 

n-cliques in S of unbounded Cantor-Bendixson degrees. Then there exist open 

neighborhoods uo, . . . ,u ,~_l  such that for every i < n, clu~ C u, ui contains 

cliques of unbounded Cantor-Bendixson degrees and so that for every choice of 

y, �9 clui,  conv(yo, . . . ,  Yn-1) q~ S. 

Proof of Lemma 5: Fix a countable base B for the topology of E (e.g. all balls 

of rational radius and a center in some countable dense set). 

Define now a mapping from wl to n-tuples from B, fl ~ (u~, . . . ,u ,~_l) ,  as 

follows. Let fl < wl be given. Choose first an n-clique P C_ u and n points in P,  

x0~,... ,x~_ I, such that rkp(x~) > ft. Since the complement of S is open, there 

are open neighborhood ui of x~ for i < n so that for every choice of Yi 6 ui it 

holds that conv(yo, . . . ,  yn- l )  G S. By shrinking each ui, we may assume that 

ui E B, clui C u and that conv(y0, . . .  ,Yn-1) ( / S  for every choice of Yi 6 clu~. 

Let ,(u f~,i . . . . . .  , u~_ l ) : - -  (Uo, , un-1). 

Since there are only countably many n-tuples from B, there is a fixed n-tuple 

(uo , . . . ,  un-1) and an unbounded I C a;1 so that (uo , . . . ,  u,,-1) = (Uo~,..., u~_ 1) 

for every ~ �9 I. 

Therefore, for every i < n and an ordinal ~ < wl, there exists a closed clique 

P a n d  a po in t  x �9 P N u i  w i th rkp (x )  > f~. Since u, is open, r k ( P N u i )  >_ ]~. 

Therefore each uz contains cliques of unbounded degrees. | 

Suppose that  S is closed, v(S) <_ Iq0 and S contains n-cliques of unbounded 

degrees. By induction on k define neighborhoods u ,  for ~? �9 n k so that: 

1. d(u~) < 1/k for all 7hV �9 n k, 

2. ~/<] v ~ cluv C_ un, 

3. un contains closed cliques in S of unbounded Cantor-Bendixson degrees, 

4. if rl0,. . .  ,71n-1 are distinct and agree up to k - 1, then for every choice of 

Yi from cl f(71i ) the convex closure of {Y0,..., Yn-1} is not contained in S. 

At stage k + 1 use Lemma 5 to find, for each 7/ �9 n k, sub-neighborhoods 

{u~--~ : i < ~}, of u , ,  which satisfy conditions 1-4 above. 
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Suppose now that  u, 7 is defined for every finite sequence over n and define 

g : n ~ ~ S by g(r/) := Nk U~tk" Since E is complete, g is well defined. Since S is 

closed, g(r/) C S for every r / � 9  n ~. 

Suppose now that  S = [.J,, Cn. The space n ~ of all infinite sequences over n 

symbols is a complete separable metric space under the metrics d(z}, v) = 1 /k  for 

the least k such that  r/(k) r v(k) .  By the Baire category theorem, there is some 

index m so that  f - l ( C m )  is somewhere dense. Choose some k and a sequence 

u �9 n k so that  f - l ( C m )  is dense in {r/ �9 n ~ : v <~ r/}. For every i < n there 

must then be a sequence 7// so that  rh Ik + 1 = r}"/, and f(Zh) �9 Cm. But then  

f(Wi) �9 uv~ by the definition of g, and therefore conv(g(r/0),. . . ,g(z/, ,-1)) ~ S 

by condition 4. Therefore Cm is not convex. | 

COROLLARY 6: A closed planar set is a countable union o f  convex sets i f  and 

only i f  ~3(S) < wl. 

P r o o f  One direction is proved above. 

For the other direction, suppose that  S C_ R 3 is closed and is not a countable 

union of convex sets. By [6], Theorem 2.2 there is a perfect 3-clique P c_ S. 

Every subset of P is a 3-clique, and since P is perfect it contains countable sets 

of unbounded Cantor-Bendixson degrees. | 

We observe that  Example 2.1 in [6] of a compact planar set S satisfies that  

~2(S) = 1 while ~3(S) = wl. Hence, classification by ~2 does not refine the 

classification by 7. 

It is natural  to ask at this point whether ~4 (S) classifies non-convexity of closed 

sets in ]R 3 analogously to the manner ~3 classifies closed sets in R 2. This is false 

by Example 4.1 in [6] (see also [5]). This example is of a compact S c_ R 3 with 

~(S) = 1 and ~(S) > R0. 
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